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A NOTE ON THE CALCULATION OF THE MATRIX ELEMENTS
OF THE ROTATION GROUP

By S. L. ALTMANN anp C. J. BRADLEY
Department of Metallurgy, University of Oxford

(Communicated by W. Hume-Rothery, F.R.S.—Received 18 December 1961)
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A recurrence relation is given for the calculation of the matrix elements of representatives of odd
dimensionality of the rotation group, which is simpler than some previously suggested. Reference
is given to some extensive tables that have been computed by means of the scheme described in
the paper and which are available.

1. INTRODUCTION
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The matrix representations of finite rotations are required in a variety of physical problems
and several methods have been proposed for their calculation. This is so because their
general expression (see Wigner 1959) is difficult to handle on a desk computer and unsuit-
able for an electronic one, since it gives the matrix elements as an expansion with awkward
coefficients. Altmann (1957) provided some simple recurrence relations for the latter, which
allowed the hand calculation of the representations of lower order for particular values of
the rotation angles, whereas for higher orders and general angles they were used to write
a programme for an electronic computer (Cohan 1958).

The procedure mentioned proved adequate in the cases for which it was used. However,
McIntosh (1960) has recently suggested that a more effective method could be built around
certain recurrence relations between the matrix elements of the rotation group that have

Y B \

> been given by Gel’fand & Shapiro (1956). The superiority of this method over the one we
< g y p 95 p y

— used before depends on the fact that the recurrence relations are between the matrix elements
O E themselves, rather than between the coefficients in their expansion. McIntosh suggests
= a way in which the relations given by Gel’fand & Shapiro could be used, but he does not
0 O y g y P

T O provide numerical results. We shall show in this note that a recurrence relation more
~w convenient than that of Gel’fand & Shapiro can be derived and we shall give a systematic

p g Y

procedure for its use. Also, we shall report on a programme for an electronic computer
that has been written to exploit the new relations, and on extensive tables that are now
available as a result.

We must stress that the whole of this note will deal with representations of the rotation
group of odd dimensionality only. Edmonds (1957) gives a recurrence relation that can
be used for representations of even dimension (half-integral angular momentum).

PHILOSOPHICAL
TRANSACTIONS
OF

Vor. 255. A. 1054. (Price 15s5.) 25 [Published 17 January 1963

[ ¢
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to S50

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. IINOIY
www.jstor.org


http://rsta.royalsocietypublishing.org/

s |
PN

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

194 S. L. ALTMANN AND C. J. BRADLEY

2. BASIC FORMULAE

We shall follow exactly the notation used by Altmann (1957). The normalized spherical
harmonics aref

Y7(0, §) = J (22;1 8; {ZB:) Pr(cos §) eims, (1)

The matrix representatives DO(Z) of a rotation £ are defined by the relation
RY[ = 3 Y1 DO(R) i (2)

In order to obtain the matrix elements that appear in (2) the rotations are expressed in
terms of their Euler angles a, £, y and their form is well known:

D(l)('%)m’m = Cm’m elm’y eime d(l)(ﬂ)m'm’ (3)
where C,py = imiHm’ jlmltm (4)
dOp) yrm = JIUAm) L ({=m) ! (I+-m") L ({—m") 1] S (). ()
In this last expression,
SPn(B) = 3 €0(r) cosrr i sind-omrm g, (6)
r=0
where 4 =min (I—m',l+m),
v =max ([—m',[+m), (7)
7, = min (g, 2[—),
D () — (=1)r
Clr) = (w—p+n)!rl(p—r) (2 —v—r)! - ®

For tabulation purposes it is often convenient to work with unnormalized spherical
harmonics #7*(0, ¢) = P(cosf) exp (img), so as not to lose significant figures. When the
unnormalized functions are used as bases for the representations in an expression formally
identical to (2), new matrix representatives must be defined which shall be denoted by
DO(R),,m These are given by the expression

DOR) = Cppm €7 €L 00 (), (9)

where FOAB) = ([+|m|)! (I—|m'|)!1 SL,.(5). (10)
The quantities $%,,(f) satisfy important symmetry relations |

SH(B) = 8%, o(f) = (—=1)**> S5 (). | (11)

Hence §8s(B) = (= 1)+ 2804 (B). (12)

It can be seen that the coefficients d®(f),,.,, satisfy exactly the same relations and that
similar properties are possessed by the £ (§). The only difference in this latter case is
that the last term in (11) must be multiplied by

(I-+161)! (1~ lal) (L Jal) ! (1 [B])L.

T Itshould be noticed that we do not include in our definition the phase factor (—1)™ (for m > 0) which
is now always used in the treatment of angular momentum. The necessary changes in our formulae to
include this factor are very easily made.
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These symmetry relations are important because they allow us to limit ourselves to the
range —!l<m <!, |m| <m' <[ when calculating the quantities $%,,(f), d%(f),,. and
F0 (). It can be seen, by drawing a diagram with m as abscissae and m’ as ordinates,
that these conditions determine a domain in the (m,m’) plane in the form of an isosceles
triangle, the two equal sides of which are along the diagonals of the first and second quadrant,
respectively.

3. THE RECURRENCE RELATIONS

We shall first consider the calculation of the quantities #%,,(£). In the region of the
(m,m") plane described at the end of the last section, we have gy =Il—m', v=I[+m and
7, = l—m’, as follows from (7). Hence, from equations (10) and (6)

—-m' (. l)l—m’—r cogmtm’+2r %ﬂsinﬂ-—(m+m'+2r) %ﬂ

FBulB) = (14 |m) 1 (=) 3 ((m+m'+r)!r!(l—m’—r)!(l~m-—r)! - (13)

r=0

The summation in (13) can be expressed in terms of the hypergeometric functiont
(see Morse & Feshbach 1953, p. 542)

0 (py = L= (Ltm)!
S nimlF) = (m~+m')! ({—|m]|)!

cotmtm’ LBsin% LpF(m' —1l,m—1; m+m'+1; —cot?1f).
(14)
As is well known, the hypergeometric function can be expressed for certain particular
values of its parameters in terms of Jacobi polynomials:

F(—n,p+n; q;2) = J,(p,q; 2), (15)

whenever 7 is a positive integer (the degree of the Jacobi polynomial) and ¢ > 0 (see Morse
& Feshbach 1953, p. 780). Equation (14) now takes the form}

= (1 ()
S m(B) = (m+m')! ({—|m]|)!

cotmtm' 1Rsin2 LA),_ (—2l+m~+m',1+m+m'; —cot?1f).
(16)
It is convenient to introduce some new polynomials of degree m in cot?}f, G2, (f),
which are related to the Jacobi polynomials as follows

(= 1) (1-+m)!

ClalF) = e T ORI (— 2t met, Lmetm's —cot?4f).  (17)
With this notation, equation (16) takes the form
L an(B) = (Tﬁi_ﬁ' cot?=m=m’ 3sin® FHGR..(F)- (18)

We can now make use of the following recurrence relation for the Jacobi polynomials
(see Morse & Feshbach 1953, p. 781)

—1
21,952 = g Lh(p=1,4=152) = Ja(p=1,4—13 2)] (19)

1 It might be useful to notice that expression (14) is valid not only for the triangular domain under
discussion in the (m, m’) plane, but also for the remainder of the first quadrant.

1 Similar expressions of the matrix elements of the rotation group in terms of the Jacobi polynomials
are well known and can be found in the references given. It should be noticed, nevertheless, that whereas
our Jacobi polynomials are given in terms of cot?}8, previous expressions involve cos .
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196 S. L. ALTMANN AND C. J. BRADLEY
to obtain a similar relation for the polynomials G%,,(5)
Gr—1,m(B) = (M’ —m) G, (B) — (I+m) G, 1 (B)- (20)

In order to use this recurrence relation we must possess starting values of G, (/) for

a particular value of m" and all m. These can be very easily obtained when m’ is given its
highest value, m' = [:

Gin(B) = cot® &, (21)

as follows immediately from (17), because J, = 1.

A systematic procedure for the calculation can now be described. Equation (21) is first
used to provide the top row of our triangle in the (m,m’) plane and the recurrence relation
(20) will yield very quickly the successive rows of the G%,.(f). As a check, the last value of
G% obtained can be compared with the one directly calculated from the expression

G (8) = lsec* 3BF(cos ), (22)

which follows from the hypergeometric function that corresponds to the Legendre poly-
nomial P(cosf). Once the G’s are calculated, the &’s are obtained from (18) and the 2’s
from (9). If the d’s are required they can be obtained directly from the &’s by the relation

B = (a1 Abr) 2 nt8) (23)

which follows from (5) and (10).

The method described is probably the quickest and safest if a desk computer is used,
because of the extreme simplicity of the recurrence relation (20). On an electronic computer
this is no advantage and it is better to work with direct recurrence relations, and starting
values, for the &#’s or d’s. These, which follow from (20) and (21), are

L w-1m(B) = (m' —m) cot 3L 0, (f) — (l+m) ((+m+1) LD i(f)  (m>0), (24)

Liv-1,m() = (m' —m) cot§fF 0, (f) = m—r (F)  (m < 0), (25)

with starting values FL(F) = cottt™ LA sin? 14, (26)

1 E—
(I m])!
and J[({-+m") ((—m'+1)]dO) 1, ,p = (m' —m) cot 35dO(F),,.,,

—JI(lm) (l=m~+1)]dOp) , m-1»  (27)

(2)! m

(Em) (=m)! cot!tm Lf sin2 14, (28)

It should be noticed that, when computing the &’s, two recurrence relations are required
to cover the basic domain.

with starting values  d®(f),,

4. 'THE PARTICULAR CASE f =}

The case f = Im merits special attention for two reasons. First, as shown by Wigner,
the matrix representatives for an arbitrary f can be obtained in terms of those for £ = 47
(see Edmonds 1957, §4-5). Secondly, it is always possible to choose axes in such a way that
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the § angle for all rotations in all crystallographic point groups takes no values other than
0, m, or 3w (Altmann 1957). In the first two cases the calculation of the matrix elements is
trivial and, as we shall see, it is much simplified when f = }#. This is so because of the
following facts:

(i) There exists now an extra symmetry relation for the functions #{,,(f), namely

PO

m,—m

(37) = (=)™ F 0 (Em) (29)

(Altmann 1957), which cuts down by one-half the basic domain of computation in the
(m,m") plane.

(ii) The starting value given by (21) is now G{(4m) = 1.

(ii1)) The values £, (37m) and &, (37) vanish if (/—m) is odd, and this provides a very
powerful intermediate check besides the final one already mentioned. The proof of this
result is as follows: Let us take m > 0, because negative m’s can be handled later by means
of (29). Then, from (14),

SO (3m) = (=) (l+m)!

= St m) (L b m =l mAm L 1), (30)

The hypergeometric function that appears in (30) can be expressed by means of a rela-
tion due to Gauss (see Erdélyi, Magnus, Oberhettinger & Tricomi 1953, p. 104)

I(1+a—b) I(3)
T1—b6+3a) TEQ+a)] (31)

Fla,b;14+a—b; —1) =24

If we take m = 0 we see, on comparing the parameters of the hypergeometric functions
that appear in (30) and (31), that the latter is applicable for all m’ in the calculation of
LW (3m) as given by (30). The appropriate substitutions give

o (1 _ (DT 1
ol = g M ) T30 m)] 2
and the expression on the right-hand side is zero whenever /—m’ is odd. In the same manner,
or through the use of relations (11), the vanishing of ¥, (3n) for [—m odd can also be
proved.

5. CALCULATIONS AND TABLES

A program has been written for the Mercury computer to calculate the coefficients
dO(f) ym- The only data required are f and the maximum value of /. The program uses the
recurrence relation (27) and prints out all coefficients in the basic domain for each / required.
Tables of d¥9(4n),,,, have been compiled for values of all / up to / = 20 and have been
deposited with the Royal Society and the Library of Congress (Bradley 1961).

Values up to / = 12 have been obtained accurately for G®(}#),,,, using a desk machine
and between the two sets of tables there is agreement to eight significant figures (the
accuracy of the output routine used in the program: the computations were carried out
with sixteen figures). The zeros, obtained along the axes in the (m,m’) plane for higher
values of /, indicate that the same accuracy is present up to [ = 20.
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